Abstract

This study of the catalytic dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate confirms the reaction scheme proposed earlier by the authors for isobutanol dehydration. The rate constant for n-butanol dehydration on H-ZSM-5 (determined from in situ FTIR kinetic studies by monitoring the growth of the water deformation peak at 1640 cm{sup -1}) is shown to be the true dehydration rate constant (1.7 x 10{sup -4}s{sup -1} at 100{degrees}C). On the other hand, the rate constants determined from GC steady-state kinetic studies (temperature interval 105-185{degrees}C) are effective ones, giving activation energies of 22{+-}2 kcal/mol and 33{+-}2 kcal/mol for complete dehydration and dehydration to butene only, respectively. By studying the dehydration reaction under different conditions (flow and static reactors, steady-state and non-steady-state regimes) and on samples with rather similar acid strengths but different porous systems (H-ZSM-5-microporous channels with diameter {approximately}5.5 {angstrom}, and amorphous aluminosilicate-pores of average diameter {approximately}50 {angstrom}), it was shown that depending on the concentration of butanol in the immediate vicinity of the active alkoxide intermediate {exists}-OC{sub 4}H{sub 9}, different reaction paths are utilized. High concentrations of alcohol favor ether formation, whereas low ones favour butene. This also explains the so-called {open_quotes}stop effect{close_quotes} observed in GC experiments, wheremore » an increase in the rate of butene formation occurs when the flow of alcohol is stopped and replaced with a flow of pure helium. Here, decreasing the concentration of alcohol in the micropores results in more of the alkoxide intermediate transforming to butene rather than to ether (which was the case at steady state). 28 refs., 17 figs., 3 tabs.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.