Abstract

Single-walled metal oxide (aluminosilicate) nanotubes are excellent candidates for addressing the long-standing issue of functionalizing nanotube interiors, due to their high surface reactivity and controllable dimensions. However, functionalization of the nanotube interior is impeded by its high surface silanol density (9.1 -OH/nm(2)) and resulting hydrophilicity. Controlled dehydration of the nanotubes is critical for the success of functionalization efforts. We employ a range of solid-state characterization tools to elucidate dehydration and dehydroxylation phenomena in the nanotubes as a function of heat treatment up to 450 degrees C. Vibrational spectroscopy (Fourier transform infrared, FT-IR), thermogravimetric analysis-mass spectrometry (TGA-MS), nitrogen physisorption, solid-state NMR, and X-ray diffraction (XRD) reveal that a completely dehydrated condition is achieved at 250 degrees C under vacuum and that the maximum pore volume is achieved at 300 degrees C under vacuum due to partial dehydroxylation of the dehydrated nanotube. Beyond 300 degrees C, further dehydroxylation partially disorders the nanotube wall structure. However, a unique rehydroxylation mechanism can partially reverse these structural changes upon re-exposure to water vapor. Finally, detailed XRD simulations and experiments allow further insight into the nanotube packing, the dimensions, and the dependence of nanotube XRD patterns on the water content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.