Abstract

Urea has been intercalated mechanochemically into dehydrated halloysite and analyzed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance ultraviolet/visible spectroscopy (DRUV–VIS), thermal analysis (TGA/DTA), transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR). The basal distance expands from 7.4 to 10.7 Å and the interaction of urea to adjacent layers of halloysite through hydrogen bonds increases the structural order of the matrix. After heat treatment in air at different temperatures, decomposition products begin to appear starting from 100 °C. Although the basal distance remains constant up to 160 °C and collapses to the original value at 200 °C, urea and the decomposition products are still present in the sample. Starting from 125 °C, urea decomposition products reduce halloysite structural Fe 3+ centers to Fe 2+, as indicated by DRUV–VIS and EPR spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.