Abstract

ZnO nanorod arrays were synthesized by chemical bath deposition. After heat treatment in hydrogen or air, Ag nanoparticles were deposited on ZnO nanorod arrays by photo-reduction method. The size of Ag nanoparticles as well as the surface morphology, structure, composition, and optical property of ZnO nanorod arrays before and after the deposition of Ag nanoparticles were characterized by SEM, XRD, EDS, and UV/VIS/NIR spectrophotometer. As compared to the samples with heat treatment in air or without heat treatment, the ZnO nanorod arrays after heat treatment in hydrogen allowed Ag nanoparticles to be deposited more uniformly, densely, and numerously. Also, they exhibited higher efficiency for the visible light-driven photocatalytic degradation of Rhodamine 6G (R6G) dye. The effects of the amount of Ag nanoparticles, initial dye concentration, and temperature on the photocatalytic degradation efficiency were investigated. Furthermore, they also exhibited better surface-enhanced Raman scattering property for the detection of R6G dyes.

Highlights

  • Nowadays, environmental problems relating to wastewaters are becoming much more serious than ever, and the photocatalytic technique with metal oxide semiconductors has become one of the most promising methods for wastewater treatment [1,2,3,4,5,6]

  • We presented a method to synthesize silver-coated ZnO nanorod arrays with silver nanoparticles depositing uniformly onto top, side, and bottom of nanorods, which offered much more active sites to take part in photocatalysis

  • It was obvious that they have all grown perpendicular to the glass substrate and revealed that the heat treatment in Ar/H2(97/3) or air atmosphere did not significantly change or destroy the one-dimensional structure of ZnO nanorod arrays

Read more

Summary

Introduction

Environmental problems relating to wastewaters are becoming much more serious than ever, and the photocatalytic technique with metal oxide semiconductors has become one of the most promising methods for wastewater treatment [1,2,3,4,5,6]. Among various metal oxide semiconductors, ZnO has gained pretty much attention with respect to the degradation of various pollutants owning to its high photosensitivity, high catalytic efficiency, low cost, non-toxicity, environmental sustainment stability, and wide band gap [7,8]. Due to its wide band gap, ZnO can only be activated by ultraviolet light of wavelength below 385 nm, only accounting for less than 5% of the solar energy, which practically limits the use of solar light or visible light. The effect of heat treatment in hydrogen or air on the deposition of Ag nanoparticles on

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call