Abstract

Temperature exerts a fundamental influence across scales of biology, from the biophysical nature of molecules, to the sensitivity of cells, and the coordinated progression of development in embryos. Species-specific developmental rates and temperature-induced acceleration of development indicate that these sensing mechanisms are harnessed to influence developmental dynamics. Tracing how temperature sensitivity propagates through biological scales to influence the pace of development can therefore reveal how embryogenesis remains robust to environmental influences. Cellular protein homeostasis (proteostasis), and cellular metabolic rate are linked to both temperature-induced and species-specific developmental tempos in specific cell types, hinting toward generalized mechanisms of timing control. New methods to extract timing information from single-cell profiling experiments are driving further progress in understanding how mechanisms of temperature sensitivity can direct cell-autonomous responses, coordination across cell types, and evolutionary modifications of developmental timing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call