Abstract
The limited swellability in polar media of the commonly used polystyrene/divinylbenzene (PS-DVB) support materials for solid-phase organic synthesis has led to the development of novel, highly swellable hydrophilic gels designed for use in aqueous or polar media. Poly(vinyl alcohol) beads crosslinked with epichlorohydrin (PVA-EP) were prepared by a two-step inverse-suspension polymerization method. While it is known that the morphology of the resulting beads can be controlled by the ratio of EP versus PVA as well as by the pre-crosslinking time, the actual degree of crosslinking of the beads and their mechanical properties remain unknown. It is therefore the purpose of this study to evaluate the actual degree of crosslinking of beads prepared with different quantities of crosslinker in the feed by spectroscopic (Raman, nuclear magnetic resonance) and chemical (functional group loading) methods. The mechanical properties of these swollen PVA-EP beads will be evaluated by single-bead unconfined compression in solvents such as water, N, N-dimethylformamide (DMF), and tetrahydrofuran (THF) and compared to model PS-DVB beads commonly used for solid phase synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.