Abstract
AbstractWe report the swelling ratio and network structure of a poly(vinyl alcohol) (PVA) gel chemically crosslinked by glutaraldehyde with different degrees of crosslinks. Microcrystallites were formed in a chemical PVA gel during a drying process and were confirmed by X‐Ray diffraction (XRD) measurements and Fourier transform infrared (FTIR) spectroscopy. The formation of microcrystallites in the dried gels was suppressed by increasing the degrees of chemical crosslinks. When the dried samples were immersed in pure water at 25 °C, the swelling ratio depended on the degree of chemical crosslinks resulting from the destruction of physical crosslinks by microcrystallites. On the other hand, when the dried samples were immersed in a poor solvent of a mixture of dimethyl sulfoxide and water at 8 °C, the gels did not swell and stayed in the collapsed state. Starting from the collapsed state, the equilibrium swelling ratios were measured while the temperature was increased to 90 °C and then decreased to 8 °C. As a result, irreversible swelling behaviors were observed for all gels with different degrees of crosslinks, which were attributed to the destruction of microcrystallites. The swelling behavior is discussed in terms of the formation and destruction of additional physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part B: Polymer Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.