Abstract

This is an in vitro study to evaluate the degree of conversion (DC) of nanoceramic and microhybrid composites activated by different polymerization modes at different intervals. To determine the DC of two resin composites at different time intervals and modes of polymerization on DC. Two commercially available composite resins-nanoceramic (Ceram X, Dentsply) and microhybrid (Spectrum TPH, Dentsply)-were used in this study. A total of 80 cylindrical samples (n = 40 each) were made by packing the composites in one increment into (5 × 2 mm) Teflon molds and cured using a light-emitting diode (LED) at an irradiance of 1,200 mW/cm2. Each group was further divided into two groups (n = 20) based on the curing modes (20 seconds, 40 seconds). These 20 samples were further subdivided (n = 10) based on the time interval (2 days, 7 days). Degree of conversion was assessed by Fourier-transform infrared spectrophotometer (FTIR) using a direct technique (attenuated total reflectance) on the top surface of the samples. Degree of conversion was measured for samples cured for 20 seconds (n = 10) and 40 seconds (n = 10) after 2 days and 7 days during which the samples were stored in an incubator at 37°C, 90% ± 10% relative humidity. The results obtained were statistically analyzed using two-way and three-way analysis of variance (ANOVA) test and p value set at (<0.005) significance level. Degree of conversion for the tested composites varied between 44% and 55% for Ceram X and 42% and 45% for Spectrum TPH. A significant difference was observed in DC for Ceram X samples for different polymerization modes (20 seconds and 40 seconds) as well as at 2-7 days measurement, whereas Spectrum TPH did not show any significant difference for polymerization modes. Ceram X demonstrated high DC values compared with that of Spectrum TPH with regard to two different polymerization modes. Lesser the time required for conversion and less the residual monomer left, better is the prognosis of the restoration, and better is the patient satisfaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.