Abstract

Electrical stressing of near-UV (peak wavelength 390–395 nm) multi-quantum-well GaN/InGaN light emitting diodes at a high drive current of 650 mA and elevated temperature of 110 °C causes a significant degradation in external quantum efficiency (EQE), correlated with the formation of nitrogen interstitial-related electron traps at Ec − 0.8 eV. The dependence of the spectral density of current noise SI on forward current If showed two regions prior to accelerated aging, with SI ∼ If due to the current flow via localized leakage channels (presumably dislocations) and SI ∼ If2 related to the generation-recombination noise caused by the Ec − 0.8 eV states and Ev + 0.75 eV hole traps in the space charge region. Electrical stress for <922 h did not change the EQE but gradually increased both reverse and forward leakage current. This was accompanied by a gradual increase in the density of the hole traps, but not the electron traps. The mechanism appears to be the displacement of Ga and In atoms, with the interstitials decorating dislocations and forming local leakage channels. For stress times >922 h, the peak EQE decreased from 26% to 15% and was accompanied by a further increase in the leakage current and density of both types of traps. One of the 20 studied diodes showed an anomalously high forward leakage current, and the noise spectrum in it was dominated by the SI ∼ If4 region typical for the presence of local overheated areas (presumably local In composition fluctuations). The EQE of this sample began to degrade after a much shorter stress time of 258 h.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call