Abstract

Under different degradation conditions, the complexity of natural oscillation of the piston pump will change. Given the difference of the characteristic values of the vibration signal under different degradation states, this paper presents a degradation state recognition method based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and eXtreme gradient boosting (XGBoost) to improve the accuracy of state recognition. Firstly, ICEEMDAN is proposed to alleviate the mode mixing phenomenon, which decomposes the vibration signal and obtain the intrinsic mode functions (IMFs) with less noise and more physical meaning, and subsequently the optimal IMF is found by using the correlation coefficient method. Then, the time domain, frequency domain, and entropy of the effective IMF are calculated, and the new characteristic values which can represent the degradation state are selected by principal component analysis (PCA) that it realizes dimension reduction. Finally, the above-mentioned characteristic indexes are used as the input of the XGBoost algorithm to achieve the recognition of the degradation state. In this paper, the vibration signals of four different degradation states are generated and analyzed through the piston pump slipper degradation experiment. By comparing the proposed method with different state recognition algorithms, it can be seen that the method based on ICEEMDAN and XGBoost is accurate and efficient, the average accuracy rate can reach more than 99%. Therefore, this method can more accurately describe the degradation state of the piston pump and has a highly practical application value.

Highlights

  • IntroductionThe piston pump affects the function realization of the whole hydraulic system

  • As the power source, the piston pump affects the function realization of the whole hydraulic system

  • The results show the residual noise in intrinsic mode functions (IMFs) is greatly reduced, and the problem of illusive components and shortage of modal aliasing in the early stage of decomposition is solved [38]

Read more

Summary

Introduction

The piston pump affects the function realization of the whole hydraulic system. According to the performance degradation of the piston pump so far, the degradation state recognition is carried out to determine the performance of the piston pump and the whole hydraulic system [1], which can provide decision-making information for condition-based maintenance (CBM), prognostics, and health management (PHM) [2]. Due to the influence of oil, temperature, load, and other factors [3,4], the components of piston pump will deteriorate because of wear [5], and this degradation will eventually lead to changes in the main performance indicators of the hydraulic pump.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.