Abstract

Spunbond polylactic acid (PLA) based agricultural mulches provide several benefits including environmental sustainability, durability, weed control, and soil moisture conservation. Large-scale adoption of PLA mulches in organic and conventional agricultural systems has been limited due to slow to biodegradation and persistence in soil. A 16-week microcosm study was conducted to assess the effects of four commercially available biostimulants (Biocat 1000, Extract PBA, Custom GP, and Environoc 501), a compost extract, and distilled water, urea, and sucrose controls on biodegradation and microbial respiration of bio-based mulch in soil. Mulch treatments included a spunbond PLA mulch, two novel composite PLA mulches with alfalfa (PLA-A) and soy (PLA-S) particles embedded in the fabric, paper mulch, and bio-based plastic film. After 16 weeks, the PLA-A and PLA-S mulches lost 43% and 48% more mass than the PLA mulch. Cumulative microbial respiration in the PLA-A and PLA-S mulch microcosms was 245% and 239% greater than respiration in PLA mulch microcosms. The effects of biostimulants on biodegradation and microbial respiration were inconsistent. Our results suggest that composite spunbond PLA mulches containing plant-based materials degrade more quickly than pure PLA mulches in soil, and certain biostimulant products may accelerate biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.