Abstract

Trichloroethylene (TCE) contaminated soil has received extensive attention in the environmental issues. Nanoscale zero-valent iron (NZVI) is considered as an excellent reduction catalyst due to fast degradation of chlorinated solvents. Therefore, this paper aims to evaluate TCE removal from soil by surfactant modified nanoscale zero-valent iron (SNZVI). In this respect, fixed 500 g soil having a diameter range 0.5–1 mm was polluted with 10 mL TCE and put inside glass column of 2.5 cm diameter × 300 cm length. The NZVI solution was prepared from reduction of FeCL3 by NaBH4 and coating with 2.5 g nonionic surfactant (Tween 85) to produce iron nanoparticle concentration of 0.1 g/L. The prepared iron nanoparticle was poured into contaminated soil and left to stir at a constant rate for 24 days. The reductive dechlorination of TCE was measured as a function of increasing chloride ion. It was found that the TCE dechlorination in the presence of iron surfaces displayed pseudo first-order kinetics. The TCE degradation rate constant () is . Also, about 30% of TCE was removed within initial 6 days. The obtained specific rate constant () was and is lower than other studies carried into aqueous phase by about 23 orders of magnitude. Finally, the SNZVI was found to be effective and fully removed to TCE within 456 hours.

Highlights

  • The remediation of contaminated soils is becoming an increasing environmental problem with serious implications

  • Some treatment and clean-up techniques of oily shorelines may include washing or manual removal; often these methods depend on natural environmental processes that act on the oil

  • The Nanoscale zero-valent iron (NZVI) solution was prepared from reduction of FeCL3 by NaBH4 and coating with 2.5 g nonionic surfactant (Tween 85) to produce iron nanoparticle concentration of 0.1 g/L

Read more

Summary

Introduction

The remediation of contaminated soils is becoming an increasing environmental problem with serious implications. Soils contaminated with hydrocarbons represent one of the most difficult challenges for remediation experts. Some treatment and clean-up techniques of oily shorelines may include washing or manual removal; often these methods depend on natural environmental processes that act on the oil. Physical in situ shoreline treatment methods include mixing ( known as tilling or aeration), sediment relocation (or surf washing), and burning. Chemical and biological in situ shoreline treatment methods include the use of chemical agents to alter the physical or chemical properties of the oil as well as use of nutrients to enhance bioremediation. Natural attenuation, is an in situ response option that allows the oiled shoreline to recover without intervention [1]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call