Abstract

Understanding the behaviour and material properties of bone is critical in predicting the failure and fracture of bones in humans. To address this, mechanical tests have traditionally been conducted to characterize bone material and this has resulted in large body of literature. However, there appears to be a lack of complete information regarding the storage protocols used for bone specimens prior to conducting mechanical tests. For example, while storage methods are well described, parameters such as the time between donor death and bone retrieval, as well as time between specimen machining and testing, are seldom reported. As biological materials undergo degradation in storage after being removed from the donor, a clear understanding of this degradation behaviour would identify critical time frames in which previously stored cortical bone specimens should be tested such that they can still be considered representative of an in-vivo condition. In this paper, the results of an investigation to determine the effects of long duration storage on the measured mechanical properties of bovine cortical bone are reported. Three different storage protocols are compared; namely machined-refrigerated, machined-frozen and frozen-machined-frozen. Degradation effects are evident for both refrigerated and frozen specimens and the results demonstrate that testing bone specimens after more than one week in storage may not provide representative in-vivo properties. In addition, specimens exhibit severe degradation after six months in storage regardless of the storage protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call