Abstract

Irradiation damage in n/sup +/-Si/p/sup +/-Si/sub 1-x/Ge/sub x//n-Si epitaxial heterojunction bipolar transistors (HBTs) by 1-MeV fast neutrons is studied as a function of fluence and germanium content for the first time. The degradation of the electrical performance of HBTs by irradiation increases with increasing fluence, while it decreases with increasing germanium content. The induced lattice defects in the base and the collector regions are studied by DLTS methods. In the base region, electron capture levels associated with interstitial boron are induced by irradiation, while two electron capture levels corresponding to the E centers and the divacancy are formed in the collector region. The degradation of device performance is then correlated with simulations of numbers of knock-on atoms. In order to examine the recovery behavior, isochronal thermal annealing is carried out for temperatures ranging from 75 to 300/spl deg/C. Based on the recovery of electrical performance, it is pointed out that the electron capture levels induced in the base and collector regions are mainly responsible for the increase of base current and the decrease of collector current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.