Abstract

In this study, the transformation and degradation mechanisms of refractory organic matter in biologically treated leachate from a semi-aerobic aged refuse biofilter (SAARB) in a nano-Fe3O4 enhanced ozonation process (nFe3O4-O3) were investigated in batch experiments. A continuous experiment then confirmed the effectiveness of the process for SAARB effluent treatment. In a batch experiment, the effects of influencing factors, including nFe3O4 dosage, O3 dosage and initial pH on the treatment performance of nFe3O4-O3 process, were comprehensively investigated. The results showed that when the nFe3O4 dosage = 6 g L-1, O3 dosage = 0.15 L minute-1 and initial pH = 7, the total organic carbon, absorbance at 254 nm and colour number removal efficiencies were 40.58%, 62.55% and 89.80%, respectively. In addition, most of the humic- and fulvic-like substances in the SAARB effluent were removed, and the condensation degree, aromaticity and humification degree of the organics were substantially reduced. The morphology and elemental valence state analysis showed that the nFe3O4 in the process was relatively stable and could form an nFe3O4-organic complex. Therefore, the probability of organics reacting with hydroxyl radical increased and the oxidation efficiency was enhanced. In the continuous experiment, both the O3 dosage and hydraulic retention time (HRT) were the key influencing factors. The treatment efficiency of the nFe3O4-O3 process was enhanced at a higher O3 dosage and longer HRT. The electrical energy consumption of the continuous nFe3O3-O3 process was calculated to be 17.72 kW h m-3 in SAARB effluent treatment. This study proved the feasibility of biologically treated landfill leachate treatment by the nFe3O3-O3 process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call