Abstract
This investigation evaluates the effectiveness of UV-365 nm/S2O8 2− process in degrading polyvinyl alcohol in aqueous solutions. The effects of pH, Na2S2O8 dosage, and temperature on the degradation efficiency of polyvinyl alcohol were studied. Under acidic conditions, the degradation efficiency of polyvinyl alcohol exceeded that under alkaline conditions. Additionally, a higher Na2S2O8 dosage and a higher temperature were associated with a higher degradation efficiency of polyvinyl alcohol. The degradation rates of polyvinyl alcohol followed a pseudo-first-order kinetic model. Moreover, the observed degradation rate coefficient increased from 0.0078 to 0.4081 min−1 when the temperature was increased from 10 to 55 °C. Also, the activation energy estimated using the observed degradation rate coefficients and the Arrhenius equation was 64 kJ/mol. At UV-365 nm, pH 3, an Na2S2O8 dosage of 0.06 g/L, a temperature of 55 °C, and an initial polyvinyl alcohol concentration of 20 mg/L, around 100 % of polyvinyl alcohol was degraded, indicating that UV-365 nm/S2O8 2− process has great potential in degrading polyvinyl alcohol in aqueous solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.