Abstract

A link tooth wheel-cylinder non-thermal plasma reactor was set up to investigate the degradation of phenol in the mists. In addition, the decomposition efficiency of phenol, TOC removal, and byproduct formation were investigated. The stable discharge was achieved in both air and the mist condition. The decomposition efficiency and TOC removal increased with increasing the input power. For the input power of 3.6 W, the phenol decomposition and TOC removal reached 90% and 47%, respectively. Phenol degradation byproducts were identified as small molecular organic acids, including formic acid, acetic acid, and oxalic acid. Their masses in the trapped solutions first increased and then decreased slightly with increasing the input power. Therefore, the biodegradation capacity of the phenol degradation byproducts can be improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call