Abstract
Visible-light-driven magnetic heterojunction as a promising photocatalysts has received much attention in environmental remediation. In this work, novel Z-scheme heterojunction MnZnFe2O4@Ag3PO4 (MZFO@APO) magnetic photocatalysts with excellent visible-light-driven photocatalytic activity are successfully constructed and characterized. The photocatalytic activity for phenol degradation is measured, and photodegradation mechanism is investigated with EPR, radical trapping experiments, and LC-MS. It turns out that the heterojunction introduced MZFO exhibits good adsorption effect on visible light and the direct Z-scheme bandgap alignment of MZFO and APO significantly improves charge separation and electron transfer, outperforming that of pure APO. MZFO@APO-40% with 40% APO content shows the rapid photodegradation performance, obtaining a 100% removal efficiency of phenol (25mg L-1) after 12-min visible light irradiation, and its kinetic constants are approximately 25.3 and 4.9 times higher than that of P25 TiO2 and pure APO, respectively. Especially, MZFO@APO-40% also possesses a high magnetic separation property and can be efficiently reused for 5 cycles. Additionally, EPR and radical trapping experiments confirm that h+, O2-, and 1O2 are the main active species in the photocatalytic process. Hydroquinone and small molecular organic acids such as maleic acid and oxalic acid are detected by LC-MS, which further indicates that the pathway of phenol degradation involves hydroxylation, open-ring reactions, and mineralization reactions. The novel addition of MZFO in photocatalyst construction has the potential to promote its application in environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.