Abstract

Hydroxyl radical induced degradation of maleic acid, fumaric acid and 20 aromatic molecules was investigated in air saturated aqueous solutions. Hydroxyl radicals were generated by an advanced oxidation process (AOP), water radiolysis. Oxidation was followed by chemical oxygen demand (COD) and total organic carbon content (TOC) measurements. Up to ∼30–50% decrease of COD the dose dependence was linear. By the ratio of the decrease of COD and the amount of reactive radiolysis intermediates introduced into the solution the oxidation efficiencies were calculated. Efficiencies around 0.5–1 (O2 molecule built in products/OH) found for most of the compounds show that the one-electron-oxidant OH induces 2–4 electron oxidations. The high oxidation rates were explained by OH addition to unsaturated bonds and subsequent reactions of dissolved O2 with organic radicals. In amino substituted molecules or in Acid Red 1 azo dye, O2 cannot compete efficiently with unimolecular transformation of organic radicals and the efficiency is lower (0.2–0.5).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call