Abstract

Abstract The gamma ray induced degradation of moxifloxacin in aqueous media has been evaluated. The drug solutions (50 & 100 mg/L) were irradiated to absorbed doses of 0.3, 0.6, 0.9, 1.2, 1.5, 2, 3 and 4 kGy using Cs-137 gamma radiation source. The parameters such as drug initial concentration, oxidant (H2O2) concentration and gamma ray absorbed doses were optimized. The efficiency of Advanced oxidation processes (AOP) was evaluated on the basis of degradation, reduction in chemical oxygen demand (COD) and toxicity reduction of the drug. The maximum degradation of 94.01 and 88.30% was achieved when drug solutions were exposed to gamma irradiation absorbed dose of 4 kGy which enhanced to 100 and 99.06% in the presence of H2O2 (0.5 mL/L) for 50 and 100 mg/L respectively. A significant reduction in COD 72 and 75% for 50 mg/L while 65 and 69% in case of 100 mg/L was noted using gamma and gamma/H2O2 respectively at absorbed dose of 4 kGy. The parameters such as dose constant (k), removal efficiency (G-value), gamma ray absorbed doses required for 50, 90 and 99% degradation (D 0.50, D 0.90 and D 0.99) have been calculated. The radiolytic degradation was monitored by UV–Vis spectrophotometer and HPLC, FT-IR studies were performed to investigate the change in functional groups before and after treatment, while GC-MS analysis was carried out to monitor intermediates/degraded end-products. The FT-IR spectra has shown complete destruction of aromatic rings after radiation treatment but a minor peak appeared at 1216 cm−1 corresponding to CO stretching. The GC-MS study for the drug samples treated with gamma/H2O2 has shown no any significant peak which confirms the complete degradation. The cytotoxicity of treated samples was carried out by hemolytic assay and mutagenicity using Ames test before and after each treatment. The hemolytic test showed 73.92% hemolysis, while gamma/H2O2 treatment reduced the mutagenicity to 74.08 and 65.66% against TA98 and TA100 bacterial strains respectively. The response surface methodology (RSM) was employed to optimize the data. The obtained data elaborate that gamma/H2O2process is promising approach for the remediation of pharmaceutical waste effluent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call