Abstract

Abstract In this study, lithium cobalt co-doped titanium oxide (Li:Co-TiO2) was reported via the sol–gel method in a one-pot synthesis approach and their potential applications were evaluated for the photodegradation of organic dye as photocatalysts. The structural and optical properties of the photocatalysts were respectively elucidated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance spectroscopy (DRS). The morphological and elemental composition of the Li:Co-TiO2 was established by high-resolution field-emission scanning electron microscopy (FESEM) coupled with EDX, which confirmed a successful preparation of the photocatalysts. The modification of TiO2 with Li:Co changes the optical properties of the pristine TiO2 with a reduction in the bandgap (3.26–2.8 eV) of the resultant photocatalysts. The photocatalytic activity of Li:Co-TiO2 composites was examined for their efficacy through the degradation of Methylene Blue (MB) dye. The photodegradation revealed an improved performance of Li:Co-TiO2 in the degradation of MB compared to pristine TiO2. The total amount of the degraded MB dye within the total time interval of the irradiation was recorded to be 72 % and 87 % for TiO2 and Li:Co co-doped TiO2 respectively. The enhanced results obtained from the photocatalytic activity of Li:Co-TiO2 to degrade MB, suggest that the composite is a potential candidate for environmental remediation and photocatalysis applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.