Abstract

The final purpose of our series of studies is to establish a biological removal method of cyanobacteria and their toxic products using immobilized microorganisms that can lyse cyanobacteria and decompose microcystins. To establish the biological removal method in non-point areas and water purification plants, as the first step, we explored bacteria active against the cyanobacterial hepatotoxin microcystin in the present study. Eleven active bacteria were isolated from samples taken from Lakes Tsukui and Sagami, Japan. Among 3 strains (B-9 to B-11) with degradative activity, strain B-9 exhibited the strongest activity. The 16S rDNA sequence of the strain B-9 showed the highest similarity to that of Sphingomonas sp. Y2 (AB084247, 99% similarity). Microcystins-RR and -LR were completely degraded by strain B-9 (SC16) within 1 d, which led to an immobilized microorganism with a polyester resin. The degradation of microcystin-RR in a bioreactor using the immobilized strain B-9 was observed and microcystin-RR (>90%) was completely degraded after 24 h. Microcystin-RR was added to the lake water at regular intervals and the degradation after 24 h was observed in the bioreactor over a 72-d period. An over 80% removal efficiency continued for 2 months, showing that the life of the immobilized B-9 in terms of activity was at least 2 months under the optimized conditions. From these results, this immobilized B-9 is feasible for the practical treatment of microcystins in non-point areas and water purification plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call