Abstract

Metal-supported solid oxide fuel cell (SOFC) has a varieties of potential advantages compared to the traditional ceramic supported SOFC. However, degradation issue of metal-supported SOFC is seriously impeding its further development, in particular, the inter-diffusion and interaction of iron, chromium and nickel at substrate/anode interface is known to be a key issue responsible for cell rapid degradation. With respect to the complexity and nonlinearity of degradation mechanism, multi-scale modeling and simulation is regarded as one powerful method to gain a deep insight on degradation mechanism. In present work, multi-scale models were presented to investigate multi-scale physicochemical phenomena happening at interface of anode/substrate, with the attempt to reveal degradation mechanism. The research procedure for the above goal was addressed in detail as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call