Abstract
m- and p-trifluoromethyl (TFM)-benzoates are completely degraded by aerobic bacteria that catabolize alkylbenzoates; biodegradation ceases after ring-fission with the accumulation of a trifluoromethyl muconate semialdehyde (2-hydroxy-6-oxo-7,7,7-trifluorohepta-2,4-dienoate, TFHOD) which is resistant to biochemical attack. A bacterium (Strain V-1), isolated from sea-water, grew aerobically on benzoate or m-toluate. Cells grown on benzoate or m-toluate oxidized both compounds at similar relative rates. Catabolism involved benzoate 1,2-dioxygenase (decarboxylating) and meta-cleavage to yield muconate semialdehydes. Cells grown on benzoate metabolized m-TFM-benzoate to TFHOD. The ring-fission products from m-toluate and TFHOD were degraded by sunlight, and equimolar fluoride was released from TFHOD. Sequential biochemical and photochemical treatment allowed the destruction of m-TFM-benzoate beyond the biochemically recalcitrant intermediate TFHOD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.