Abstract
This letter studies the electrical degradation of laterally grown polycrystalline silicon thin-film transistors (poly-Si TFTs) under dynamic voltage stress. The experimental results show the serious electrical degradation of poly-Si TFTs with a protruding grain boundary. The concentration of the electric field in the protrusion region was verified by capacitance-voltage measurements and simulation of the device characteristics. These results reveal that more electrons are induced at the grain boundary of the poly-Si channel because of the relatively high electric field in the protrusion region. Based on these data, this letter proposes a model to explain the enhanced electrical degradation of poly-Si TFTs with a protruding grain boundary, generated by laser-crystallized lateral growth technique
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.