Abstract

In this study, we have found that IGF-binding protein-3 (IGFBP-3) in calf serum added to tissue culture medium is degraded by cultured FRTL-5 cells and a major 31 kDa fragment of IGFBP-3 is produced. When FRTL-5 rat thyroid cells were cultured in 6H medium (modified F-12M medium containing TSH, insulin, hydrocortisone, somatostatin, transferrin, and glycyl-histidyl-lysine) containing 5% calf serum, both 44-46 and 31 kDa IGFBPs were found in conditioned medium by ligand blot analysis using 125I-labelled IGF-II. However, predominantly the 44-46 kDa IGFBP was detected in unconditioned 6H medium containing 5% calf serum. When calf serum in the media was replaced by human serum similar results were obtained, and the 44-46 kDa and 31 kDa IGFBPs were recognized using a human IGFBP-3 antibody following Western blot analysis. FRTL-5 cells secreted only small amounts of an endogenous 29 kDa IGFBP, thought to be IGFBP-5. To separate the 31 kDa fragment of IGFBP-3 from the endogenous IGFBP-5, culture media were fractionated by concanavalin-A-Sepharose chromatography and aliquots of both flow-through and eluate from the column were analyzed by ligand blotting. A 31 kDa IGFBP was found in the eluate fractions from concanavalin-A-Sepharose chromatography following the separation of conditioned 6H medium supplemented with calf serum, suggesting that this species was an N-linked glycoprotein and could be derived from the degradation of serum IGFBP-3 by FRTL-5 cells. Using a modified zymographic assay, we examined whether the degradation of IGFBP-3 could depend on the cell membrane. Confluent FRTL-5 cells were washed with PBS and overlaid with liquid agarose solution. After the agarose had solidified, unconditioned 6H medium containing 5% calf serum was incubated with the cells at 37 degrees C for 16 h. Both 44-46 and 31 kDa IGFBP species were found in the overlying, conditioned medium by ligand blot. However, the 31 kDa IGFBP was not found in medium in the absence of FRTL-5 cells, and no IGFBP could be found in serum-free conditioned medium from agarose-covered FRTL-5 cells. This suggests that the 44-46 kDa IGFBP-3 in serum was degraded to yield a 31 kDa fragment, while any endogenous IGFBP-5 could not pass out of the agarose. The degradation of 44-46 kDa IGFBP-3 in the modified zymographic assay was inhibited by phenylmethylsulfonyl fluoride, EDTA, and aprotinin, but not by leupeptin. In summary, these results indicated that IGFBP-3 in calf serum added to culture medium could be degraded by FRTL-5 cells and that this may involve calcium-dependent serine proteases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.