Abstract

A facultative bacterial strain isolated from municipal solid waste (MSW) obtained from a simulated landfill bioreactor was found to have the ability to use dibutyl phthalate (DBP) as its sole source of carbon and energy. Based on its morphology, physiochemical characteristics, and 16S rDNA sequence, the strain was identified as Enterobacter sp. T1. Evaluation of the degradation of DBP in refuse collected during the initial, acidic, and methanogenic phases of landfill before and after inoculation with Enterobacter sp. T1 revealed that the degradation fits first-order kinetic models for refuse from all phases. The removal rate of DBP in the refuse of the methanogenic phase increased from 59.3% to 74.5% when Enterobacter T1 was added. The half-life of DBP in refuse from the methanogenic phase that was inoculated with Enterobacter T1 decreased by 36.7% relative to uninoculated samples, and the intermediate products monobutyl phthalate (MBP) and phthalic acid were detected in all samples. These results provide new evidence for the potential of applying Enterobacter sp. for phthalic acid ester-polluted area remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call