Abstract
The degradation of the glucocorticoid cloprednol and its 21,21-dideuterio analogue was studied in aqueous solution at 60 /sup 0/C. The kinetic deuterium isotope effect was found to vary from 5.5 under acidic conditions to 1.0 under alkaline conditions, indicating a change in rate-determining step as a function of pH. Incorporation of hydrogen into the C-21 position of cloprednol in partially degraded samples occurred slowly or not at all under acidic conditions but occurred rapidly under alkaline conditions. These results are consistent with the formation of an obligatory enol intermediate in the degradation reaction of cloprednol and require a change in the rate-determining step from rate-determining enolization under acidic conditions to reversible enol formation under alkaline conditions. Prednisolone, hydrocortisone, and other glucocorticoids possessing the dihydroxyacetone group at C-17 are expected to behave similarly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.