Abstract
The release of Mn(II) occurs in the degradation of organic matters by manganese ore (MnO2), resulting in a reduced efficiency. During the degradation of ciprofloxacin (CIP), in a biofilter, this paper put forward a novel method that similar to the geo-cycle of Mn (MnCS) on the Earth to regenerate MnO2. The freshly prepared MnO2 was suitable for the use in the MnCS. It indicated that the mutual conversion between Mn(II), Mn(III), and Mn(IV) in the MnCS, which was driven by CIP and manganese oxidizing bacteria (MnOB), could maintain the activity of MnO2. The MnCS showed feasibility in the coexistence of ammonia or humic acid, and provided a kinetic degradation. The physicochemical features of MnO2 before and after bio-regeneration were characterized by TEM, XRD, BET, and XPS. It was found that the morphological structure of MnO2 became loose and the maximum peak of pore size distribution became smaller, but the increase of surface area, the change of Mn(III/IV) content, and the decrease of crystallinity favored the bio-regeneration process. Moreover, as a mediator in the MnCS, the group of MnOB was dramatically inhibited by CIP, and the bacterial community had changed significantly. The typical MnOB shared low abundance in the biofilter, while the rarely reported genera (e.g. Sphingomonas) that related to the formation of Mn deposits appeared to be involved in the MnCS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.