Abstract

Spinel ferrites have shown great potential to activate peroxides for environmental remediation. In this work, a Mn-Zn ferrite catalyst was fabricated by the citrate combustion method from spent Zn-Mn alkaline batteries. The synthesized Mn0.6Zn0.4Fe2O4 catalysts were applied to activate peroxomonosulfate (PMS) and degrade bisphenol A (BPA) in water. A 95.8% BPA (0.1 mM) removal was achieved at initial pH of 6.2, Mn0.6Zn0.4Fe2O4 dosage of 0.2 g/L, PMS concentration of 0.5 mM, and reaction time of 60 min. The concentration of metal leaching and radical identification experiments suggested that BPA is mainly degraded by surface-adsorbed reactive radicals. Metals at A site of the spinel (AFe2O4, A = Mn and Zn) were responsible for PMS activation and Fe(III) acted as the reservoir for the surface hydroxyl groups, which substantially accelerated the degradation of BPA. The addition of Cl− improved the destruction of BPA and a NaHCO3 concentration below 5 mM had a negligible effect on the BPA removal. When the PMS/Mn0.6Zn0.4Fe2O4 process was used to treat real river water spiked with BPA, the removal of BPA was much faster than that in deionized water. This implied that the PMS/Mn0.6Zn0.4Fe2O4 process may provide some new insights not only for the recycling of spent batteries, but also for removal of contaminants from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call