Abstract
8:2 fluorotelomer carboxylic acid (8:2 FTCA), an important precursor of perfluorocarboxylic acids (PFCAs), is widely detected in environment and biotas. Hydroponic exposures were conducted to investigate the accumulation and metabolism of 8:2 FTCA in wheat (Triticum aestivum L.) and pumpkin (Cucurbita maxima L.). Endophytic and rhizospheric microorganisms co-existing with the plants were isolated to investigate their contributions to degrade 8:2 FTCA. Wheat and pumpkin roots could take up 8:2 FTCA efficiently with the root concentration factor (RCF) as 5.78 and 8.93, respectively. 8:2 FTCA could be biotransformed to 8:2 fluorotelomer unsaturated carboxylic acid (8:2 FTUCA), 7:3 fluorotelomer carboxylic acid (7:3 FTCA), and seven PFCAs with 2–8 carbon chain length in plant roots and shoots. Cytochromes P450 (CYP450) and glutathione-S-transferase (GST) activities in plants were significantly increased, while flavin-dependent monooxygenases (FMOs) activities were not changed, suggesting that CYP 450 and GST were involved in the transformation of 8:2 FTCA in plant tissues. Twelve 8:2 FTCA-degrading endophytic (8 strains) and rhizospheric (4 strains) bacterial strains were isolated from root interior, shoot interior and rhizosphere of plants, respectively. These bacteria were identified as Klebsiella sp. based on the morphology and 16S rDNA sequence, and they could biodegrade 8:2 FTCA to intermediates and stable PFCAs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have