Abstract

In this paper, we report the synthesis of ZnO, ZnO/HZSM-5, ZnO/HY and ZnO/Clin by a poly acrylamide pyrolysis method for the first time. The presences of carbon network/cages in the poly acrylamide gel can effectively prevent particle agglomeration. The catalytic activity of all specimens was tested by carrying out the 4-nitrophenol degradation, used as a “probe” reaction, in the aqueous medium under ambient visible light. The prepared samples were characterized by X-ray diffraction (XRD), specific surface area (BET) and porosity determination, scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), visible-ultraviolet diffuse reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FT-IR), to evaluate particle structure, size distribution and composition. The results revealed that among the catalysts, ZnO/HZSM-5 showed higher percentage of adsorption than others. The time required for complete mineralization of 4-NP under ambient visible light over ZnO/HZSM-5 was 75min. The higher activity of ZnO/HZSM-5 is mainly due to fine dispersion of ZnO and hydrophobicity of the support. An artificial neural networks (ANNs) model was developed to predict the performance of catalytic degradation process over synthesized catalysts based on experimental data. A comparison between the predicted results of the designed ANN model and experimental data was also conducted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.