Abstract
Industrial wastewaters containing 2-mercaptobenzothiazole (MBT), a widely used chemical additive, usually cannot be treated properly by conventional biological methods, thus cause an environmental risk. Ionizing radiation was proposed as a method for abatement of several refractory pollutants from water. The paper investigated MBT degradation using irradiation technology. The decomposition kinetics was described, and the transformation and the change of biodegradability were discussed. The results of gamma radiation experiments on MBT-containing aqueous solutions indicated that reactive radicals resulting from water radiolysis effectively degrade MBT and improve the biodegradability of the solutions. At a 20mg/L MBT concentration, the removal of 82% was achieved at the absorbed dose of 1.2kGy. The results of specific oxygen uptake rate (SOUR) test showed that MBT was decomposed into biodegradable products, after irradiation at 20kGy. Radicals attacked the sulfur atoms of the studied molecule leading to the release of sulfate ions, but the mineralization of organic carbons was rather weak. Initial concentration significantly affected the degradation efficacy of MBT by gamma radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.