Abstract

Increasing hydrogen peroxide (H2O2)-based systems have been developed to degrade various polysaccharides due to the presence of highly reactive free radicals, but published degradation mechanisms are still limited. Therefore, this study aimed to clarify the degradation mechanism of six typical glucosidic bonds from different disaccharides in an ultraviolet (UV)/H2O2 system. The results showed that the H2O2 concentration, disaccharide concentration, and radiation intensity were important factors affecting pseudo-first-order kinetic constants. Hydroxyl radical, superoxide radical, and UV alone contributed 58.37, 18.52, and 19.17% to degradation, respectively. The apparent degradation rates ranked in the order of cellobiose ≈ lactose > trehalose ≈ isomaltose > turanose > sucrose ≈ maltose. The reaction pathways were then deduced after identifying their degradation products. According to quantum chemical calculations, the cleavage of α-glycosidic bonds was more kinetically unfavorable than that of β-glycosidic bonds. Additionally, the order of apparent degradation rates depended on the energy barriers for the formation of disaccharide-based alkoxyl radicals. Moreover, energy barriers for homolytic scissions of glucosidic C1-O or C7-O sites of these alkoxyl radicals ranked in the sequence: α-(1 → 2) ≈ α-(1 → 3) < α-(1 → 4) < β-(1 → 4) < α-(1 → 6) < α-(1 → 1) glucosidic bonds. This study helps to explain the mechanisms of carbohydrate degradation by free radicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call