Abstract

The degradation of roxithromycin (ROX) by hydroxyl radical (·OH) generated by UV/H2O2 was systematically investigated in terms of degradation kinetics, effects of water chemistry parameters, oxidation products, as well as toxicity evaluation. The degradation of ROX by UV/H2O2 with varying light irradiation intensity, initial ROX concentration, and H2O2 concentration in pure water and wastewater all followed pseudo-first-order kinetics. The second-order rate constant for reaction between ROX and ·OH is 5.68 ± 0.34 × 109/M/s. The degradation rate of ROX increased with the pH; for instance, the apparent degradation rates were 0.0162 and 0.0309/min for pH4 and pH9, respectively. The presence of natural organic matter (NOM) at its concentrations up to 10mg C/L did not significantly affect the removal of ROX. NO3- and NO2- anions inhibited the degradation of ROX due to the consumption of ·OH in reactions with these ions. Fe3+, Cu2+, and Mg2+ cations inhibited the degradation of ROX, probably because of the formation of ROX-metal chelates. A total of ten degradation products were tentatively identified by HPLC/LTQ-Orbitrap XL MS, which mainly derived from the attack on the oxygen linking the lactone ring and the cladinose moiety, tertiary amine and oxime side chain moiety by ·OH. The toxicity evaluation revealed that UV/H2O2 treatment of ROX induced the toxicity to bioluminescent bacteria increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.