Abstract

Degradation mechanisms of nitride-based near-ultraviolet (near-UV) light-emitting diodes (LEDs) were systematically analyzed by applying forward- and reverse-bias stresses to them in a salt water vapor ambient. The surface temperature of the forward-bias stress sample was higher than that of the reverse-bias stress sample. The high temperature of the forward-bias stress sample accelerated the chemical reaction of the device structure with salt water vapors and led to faster degradation. Composition analyses of the sample surface and cross-section were conducted to investigate the failure mechanism. The analyses results indicated that the erosion of the indium–tin–oxide layer enhanced the diffusion of the conducting metal into the LED crystal. The proposed method can effectively characterize the quality of near-UV LEDs in a short duration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call