Abstract

The impact of moisture and heat treatment on the microstructural, chemical, and electrical properties of Cu(In,Ga)Se2 films and their collective effect on the solar cell device performance was studied. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy measurements show that water exposure causes surface modification and alters the alkali metal distribution, while no composition or structural effect was observed. Deep level transient and optical spectroscopies revealed that the trap densities (NT) for both the EV + 0.65 eV and EV + 0.98 eV traps increase after water exposure, while the majority carrier concentration (NA) decreases. Time-resolved photoluminescence (PL) and steady-state PL measurements indicated the presence of static, not dynamic, quenching. Reduction of open-circuit voltage (VOC) and fill factor (FF) was observed for the devices but was not associated with a change of recombination mechanism, which remains in the absorber space charge region. A small increase in series resistance and shunt conductance accounts for most of the FF change, while the modification in both NA and NT yield most of the change in VOC . A gradient of majority carrier concentration, related to the alkali profile, also yields a small voltage-dependent current collection after moisture and heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.