Abstract

The source of high–brilliance, hard x-ray radiation in light sources and free electron lasers are undulator insertion devices. Recently, REBCO-based superconductors have been demonstrated to be a potential candidate to enhance the performance of the undulator insertion devices. Epoxy impregnation remained as one of the steps which is crucial to fully realize this technology. Epoxy impregnation of magnets is required because it prevents the motion of the wire and provides conduction cooling to the winding layers. Up until now, most of the impregnated REBCO coils/magnets showed some degree of degradation after cold cycles. We developed a vacuum impregnation technique that does not degrade the performance of the short REBCO prototype undulator magnets after cold cycles. The results showed that in order to prevent degradation, a bumper layer between the magnet winding stacks and the epoxy/powder mixture is required. Microstructure images of vacuum impregnated coil packs showed homogenously-spaced REBCO winding layers and very thin epoxy fillings between the layers, which is important for the overall performance of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.