Abstract
N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO4•− and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.