Abstract

In this work, we study the effect of strong electric fields on a polymer/graphene composite and the resulting morphology upon its dielectric breakdown. Our model system was produced by compounding up to 0.25 wt % graphene nanoplatelets (GNP) into poly(ethylene-co-vinyl acetate) (EVA), which is a soft polymer with low melt viscosity. A strong electric field of up to 400 Vrms/mm was applied to the EVA/GNP composite in the melt. The sample’s resistance over the electric field application was simultaneously measured. Despite the low GNP loading, which was below the theoretical percolation threshold, the electric conductivity of the composite during electric field application dramatically increased to >10−6 S/cm over 5 min of electric field application before reaching the current limit of the experimental apparatus. Conductivity growth follows the same scaling relationship of the theoretical model that predicts the rotation and translation time of GNPs in a polymer melt as a function of electric field strength. Since no significant GNP alignment in the composite was observed under transmission electron microscopy (TEM), we hypothesized that the increase in electrical conductivity was due to local electrical treeing of the polymer matrix, which eventually leads to dielectric breakdown of the composite. Electrical treeing is likely initiated by local GNP agglomerates and propagated through conductive channels formed during progressive dielectric breakdown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.