Abstract
AbstractThe spectral gap of the Neumann and Dirichlet Laplacians are each known to have a sharp positive lower bound among convex domains of a given diameter. Between these cases, for each positive value of the Robin parameter, an analogous sharp lower bound on the spectral gap is conjectured. In this paper, we show that the extension of this conjecture to negative Robin parameters fails by proving that the spectral gap of double cone domains are exponentially small, for each fixed parameter value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.