Abstract
AbstractWe investigate the question of whether the eigenvalues of the Laplacian with Robin boundary conditions can satisfy inequalities of the same type as those in Pólya’s conjecture for the Dirichlet and Neumann Laplacians and, if so, what form these inequalities should take. Motivated in part by Pólya’s original approach and in part by recent analogous works treating the Dirichlet and Neumann Laplacians, we consider rectangles and unions of rectangles and show that for these two families of domains, for any fixed positive value $\alpha$ of the boundary parameter, Pólya-type inequalities do indeed hold, albeit with an exponent smaller than that of the corresponding Weyl asympotics for a fixed domain. We determine the optimal exponents in both cases, showing that they are different in the two situations. Our approach to proving these results includes a characterization of the corresponding extremal domains for the $k^{\textrm{}}$th eigenvalue in regions of the $(k,\alpha )$-plane, which in turn supports recent conjectures on the nature of the extrema among all bounded domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.