Abstract
We study a degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The aim of this paper is to prove convergence of numerical approximate solutions towards the unique entropy solution. We propose an implicit finite volume scheme on admissible mesh. We establish fundamental estimates and prove that the approximate solution converge towards an entropy-process solution. Contrarily to the case of Dirichlet condition, in zero-flux problem unnatural boundary regularity of the flux is required to establish that entropyprocess solution is the unique entropy solution. In the study of well-posedness of the problem, tools of nonlinear semigroup theory (stationary, mild and integral solutions) were used in order to overcome this difficulty. Indeed, in some situations including the one-dimensional setting, solutions of the stationary problem enjoy additional boundary regularity. Here, similar arguments are developed based on the new notion of integral-process solution that we introduce for this purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.