Abstract

Silicon-based plasmonic waveguides show high confinement well beyond the diffraction limit. Various devices have been demonstrated to outperform their dielectric counterparts at micrometer scales, such as linear modulators, capable of generating high field confinement and improving device efficiency by increasing access to nonlinear processes, limited by ohmic losses. By using hybridized plasmonic waveguide architectures and nonlinear materials, silicon-based plasmonic waveguides can generate strong nonlinear effects over just a few wavelengths. We have theoretically investigated the nonlinear optical performance of two hybrid plasmonic waveguides (HPWG) with three different nonlinear materials. Based on this analysis, the hybrid gap plasmon waveguide (HGPW), combined with the DDMEBT nonlinear polymer, shows a four-wave mixing (FWM) conversion efficiency of -16.4 dB over a 1μm propagation length, demonstrating that plasmonic waveguides can be competitive with standard silicon photonics structures over distances three orders of magnitude shorter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.