Abstract

All-optical logic operation is theoretically demonstrated by means of polarization-dependent four-wave mixing (FWM) processes in a highly nonlinear silicon hybrid plasmonic waveguide (HPWG) microring resonator. We design an ultra-compact (radii = 1 μm) microring resonator (MRR) that is realized by using a silicon HPWG with the capacity for subwavelength-bending. The HPWG exhibits very high confinement (Aeff~0.045 μm(2)) that can result in a remarkably high nonlinear parameter (γ~3000 W(-1) m(-1)), given a highly nonlinear gap material. By manipulating the polarization properties of the pump and signals with a very low electric field (|E|~10(8) Vm(-1)), all-optical NOT, NOR, and NAND logical operations are obtained through the FWM process. These compact all-optical nanoplasmonic devices are stable, fabrication simplified, and silicon on insulator (SOI) compatible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.