Abstract

The frustrated Ising model on kagome lattice with nearest-neighboring antiferromagnetic interaction is investigated by using Monte Carlo simulation of the Wang–Landau algorithm and Glauber dynamics. The geometrical frustration leads to a particularly high degeneracy of ground states in this system. A small magnetic field applied can lift the degeneracy partially, and produce the magnetization plateau of 1/3 saturate value ( Ms), which is analogous to the magnetic behavior in triangular antiferromagnetic system. However, different from the long-range ferrimagnetic state responsible for 1/3 Ms plateau in triangular lattice, the ferrimagnetic ground state corresponding to 1/3 Ms plateau in kagome lattice is short-ranged and still highly degenerate. Furthermore, the spin configuration of these degenerate ferrimagnetic ground states show an inherent characteristic that the spins along the magnetic field must be aligned on the closed loops, which can be well understood in terms of geometrical frustration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call