Abstract

Gravitational wave (GW) detections of binary neutron star inspirals will be crucial for constraining the dense matter equation of state (EOS). We demonstrate a new degeneracy in the mapping from tidal deformability data to the EOS, which occurs for models with strong phase transitions. We find that there exists a new family of EOS with phase transitions that set in at different densities and that predict neutron star radii that differ by up to ∼500 m but that produce nearly identical tidal deformabilities for all neutron star masses. Next-generation GW detectors and advances in nuclear theory may be needed to resolve this degeneracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.