Abstract
Membrane scaffold proteins-based nanodiscs (NDs) have facilitated unprecedented structural and biophysical analysis of membrane proteins in a near-native lipid environment. However, successful reconstitution of membrane proteins in NDs requires prior solubilization and purification in detergents, which may impact their physiological structure and function. Furthermore, the detergent-mediated reconstitution of NDs is unlikely to recapitulate the precise composition or asymmetry of native membranes. To circumvent this fundamental limitation of traditional ND technology, we herein describe the development of membrane-solubilizing peptides to directly extract membrane proteins from native cell membranes into nanoscale discoids. By systematically protein engineering and screening, we created a new class of chemically modified Apolipoprotein-A1 mimetic peptides to enable the formation of detergent-free NDs (DeFrNDs) with high efficiency. NDs generated with these engineered membrane scaffold peptides are suitable for obtaining high-resolution structures using single-particle cryo-EM with native lipids. To further highlight the versatility of DeFrNDs, we directly extract a sampling of membrane signaling proteins with their surrounding native membranes for biochemical and biophysical interrogations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.