Abstract
Endovascular treatment devices of the femoropopliteal artery have evolved, improving clinical results. However, the effects of dynamic changes in the popliteal artery during knee flexion have not been sufficiently investigated. In this study we performed a 3-dimensional analysis to clarify the dynamic changes in the popliteal artery during knee flexion and their effects on hemodynamics.Methods and Results: To analyze dynamic changes in the popliteal artery in the knee flexion position, a computed tomography protocol was developed in the right-angled and maximum flexion knee positions. Thirty patients with lower extremity artery disease were recruited. V-Modeler software was used for anatomical and hemodynamic analyses. Various types of deformations of the popliteal artery were revealed, including hinge points and accessory flexions. Kinks can occur in the maximum flexion position; however, they rarely occur in the right-angled flexion position. In addition, hemodynamic analysis revealed a tendency for lower minimum wall shear stress and a higher maximum oscillatory shear index at the maximum curvature of the popliteal artery. Kinks in the maximum flexion position suggested that the outcome of endovascular treatment may change in areas such as Japan, where knee flexion is customary. Hemodynamics at the maximum curvature of the popliteal artery indicated that the luminal condition was unfavorable for endovascular treatment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have