Abstract
The high energy single folding optical potential approximation is studied to calculate the differential cross-section for proton elastic scattering of 12 C at 156 MeV and 1440 MeV and 12 C for state 2+ (4.44 MeV) at 1440 MeV. A Gaussian nuclear density distribution was used for the proton and Gaussian and Brink nuclear density distributions for the 12 C target. We used the following three effects to derive twelve different methods for the central optical potential: (i) Love and Franey and the Gaussian amplitudes, with the Brink and one-term Gaussian nuclear density distributions, (ii) Pauli correlation in the Gaussian amplitude with these densities, (iii) coupling channels on the differential cross-sections in proton elastic scattering of 12 C at 1440 MeV with single channel calculations using these amplitudes, nuclear density distributions and Pauli correlation in the Gaussian amplitude. A new numerical technique was performed to solve the deformed optical potential equations using computational programs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have